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Abstract. W e  study the motion of electmm across a t o m  which have only two 
permissible valence states: empty or singly occupied. ‘The model we use is the t- 
J model. For the geometry composed of an infiaite chain of edge-sharing squares, 
we show that, at low concentrations of electrons, their spin and charge degrees 01 
freedom ‘separate’. Even in the absensc of Heisenbug interactions the spin degrees 
of freedom yield the Heisenberg ground state of the linear chain. The charge degrees 
of freedom m a y  be modelled by spinless fermions. When two electrons meet in a 
dat ive  spin ringlet, they are locally converted into spinless hard-core bosons. This 
possibility promotes Heisenberg correlations and simultaneously yields an attraction 
between the spinless femrions. This physicalmechanismis clearly a candidate for an 
explanation to perowkite superconductivity 

1. Introduction 

Almost immediately after the discovery of ‘high temperature superconductivity’ [l], 
P W Anderson suggested that the natural theoretical model was the Hubbard model 
on the square lattice in the strong-coupling limit [2]. After a worldwide theoretical 
effort, the same Hamiltonian is still the centre of theoretical research into the p h e  
nomenou, although the name seems to have changed to the t-J model. Despite the 
cleq experimental justification of the model, there is still no theoretical evidence for 
superconductivity inherent in the model. The failure of the model to exhibit supercon- 
ductivity has led to various embellishments and even a challenge to the model itself [3]. 
Although the justification of the model for hole superconductors is dubious [3], this 
model as a description for electron superconductors seems inescapable. Following on 
from our treatment of a line of squares connected along their diagonals, in this article 
we will tackle the more difficult geometry of a line of edgesharing squares depicted 
in figure 1. The present geometry has interconlaecfing squares which makes it both 
an order of magnitude more sophisticated and simultaneously more representative of 
the twedimensional square lattice. We will show that charge-carriers moving in the 
presence of paramagnetic spin correlations are attracted to each other. 

The physical mechanism which underpins the present analysis is elementary but 
seems quite general: In paramagnetic systems with short range antiferromagnetic spin 
correlations, fermions can behave effectively as hard-core spinless bosons. When two 
fermions meet in a relative spin singlet, exchanging the two particles does not yield 
the expected fermionic minus sign, since the spin singlet autisymmetry contributes a 
compensating minus sign and the two particles exchange with a bosonic plus sign. 
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Figure 1. The linear chain of squares geometry. A pair of atoms on a a t i s  bond 
M called M ‘edge bondingpair’ in the text. 

In order for the mechanism to apply, it must be possible for two particles to be 
exchanged and so we must study a geometry with topological loops. Triangles cannot 
be used since two particles behave as one hole, and so the smallest relevant loop is the 
square. 

The second necessary input to the phenomenon is short range paramagnetic spin 
correlations. It is this second constraint which has hidden the effect in most of the 
theoretical studies to date. The obvious limit to take is that corresponding to the 
experimental systems of a few extra holes near half filling. Unfortunately, extra holes 
in the 1-J model promote short-range ferromagnetic spin correlations [4], the opposite 
physical effect. To stabilize paramagnetism, one either requires strong Heisenberg 
interactions or sufficient charge-carriers to ensure a high probability of doubly occupied 
squares. Both of these limits are d%cult to tackle theoretically. We should point out 
that the natural Eamiltonian for the hole superconductors does not suffer from this 
drawback [3], although it is difficult to tackle for other reasons. In this article we will 
move away from the experimental charge-carrier concentration and study a technically 
easier limit: low doping of electrons into an otherwise empty lattice. Taking this 
extreme limit allows paramagnetism to be stabilized by a rather different physical 
phenomenon; first discovered by Kanomori [5]. In turn, this simplification allows us 
initially to omit the Heisenberg interaction, which may be required in the experimental 
limit to stabilize paramagnetism, and to study the charge motion in isolation. 

We study the t-model: 

H = -t (I  - c ~ ~ c i 3 ) c f , c i , u ( l  
( i i ’ ) O  

where c!, creates an electron of spin U (complementary spin 5) on a site i, and (ii’) 
denotes nearest neighbour bonds on the ‘ladder’ geometry of figure 1. The extra 
bracketed terms are projection operators which ensure that sites can never become 
doubly occupied. This Hamiltonian simply ‘shuffles’ or permutes spins about on the 
lattice by hopping electrons to neighbouring vacant atoms. The geometry is bipartite 
and so the sign of the hopping matrix element, t ,  is irrelevant. 

The &model is a particularly difficult model to solve. The electrons are free to move 
about on the lattice yielding charge degrees of freedom, but as they move they carry 
with them a fixed spin, which can be exchanged with another spin by exchanging 
the two relevant electrons. The spin and charge degrees of freedom are intimately 
coupled and, although we can solve non-interacting charge motion and have some 
understanding of Heisenberg exchange, it is not clear how the interchange between 
them might behave. 

Due to the very simple character of a single particle on our geometry, it is possible 
to develop a consistent representation for the tweparticle interactions. In section 2 
we will show how to remodel the system with interacting spinless fermions indicating 
the sense in which the spin and charge degrees of freedom are decoupled. In section 3 
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we run through the development of a resulting BCS pairing theory and in section 4 we 
conclude. 

2. Interacting spinless fermions 

In our modelling we will restrict attention to low concentrations of electrons. The 
physical content of our approximation is that we will describe up to two electrons in 
the same square correctly, but we will provide a description for three electrons in a 
square which has similar characteristics to the original model but does not agree with 
it. Provided that the concentration of electrons is low, the errors that we make should 
be irrelevant. Firstly we shall look at the single-particle problem and explain the sense 
in which its character enables us to successfully describe the two-particle interactions. 

8. I. The single-particle problem 

If we have a single particle on an otherwise empty lattice, then the statistics and spin 
characteristics are completely irrelevant. The projection operators in equation (1) are 
irrelevant because an atom can never be doubly occupied with only one electron and 
the problem reduces to a simple non-interacting Hamiltonian: 

H = -t &, 
( i i ' )  

where we have omitted the irrelevant spin degree of freedom on the electron which is 
created by af on site i .  

The crucial bonds for the present geometry are the crms bonds which form the 
connecting edges of the row of squares. We will henceforth call these bonds edge 
bonds. The combinations which diagonalize these bonds also separate the single- 
particle description into two independent bands. If we denote the bonding combination 
by, fj, on an edge bond j ,  and the anti-bonding combination by g:, then effectively 

which diagonalizes to form 

H = -t fjfk(l + 2 cos k) + t c g L g k ( l  - 2 cos 11.) 
k k 

with the dispersion depicted in figure 2. 
The fact which allows an analytic treatment of this model is that at low energies the 

only excitations are pure edge bonding orbitals. The behaviour of states restricted to 
pure edge bonding combinations is particularly simple and allows a proper description 
of the two-particle interactions. 

Although we have developed the present analysis for a single particle, the solution 
simultaneously solves the case of saturated ferromagnetism at the many-particle level. 
If all the spins are parallel, then the constraint that no atomshould be doubly occupied 
is automatically guaranteed by Pauli exclusion. The problem reduces to the non- 
interacting spinless fermion description of equation (3), since the spin label is the same 
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Figure 2. The dispersion for a single partick moving on the linear chain of square. 
The lower band involves pure edge bonding states and the upper band involves pure 
edge anti-bonding states. 

for all the particles and hence can be safely omitted. Since electrons are fermions, we 
must apply anticommutation relations to the many-particle problem, yielding a Fermi 
surface in the ground state. It is this non-interacting state that we will use as a 
reference, in order to determine whether the additional interactions are attractive or 
repulsive. 

For electron concentrations up to one per square, the solution comprises only 
edge bonding combinations. No two electrons ever sit on the same edge bond, and 
the order of the particles never changes. Each particle may be labelled in sequence 
without modifying the basic description of the problem. It is this fact whi&,enables 
us to address the situation with arbitrary spin configurations by comparison with the 
non-interacting spinless fermion solution. 

For an eigenstate of the Hamiltonian the spin configuration along the chain remains 
approximately fixed. The particles ordered along the chain can be labelled with a fixed 
spin configuration which is a linear superposition of many different spin arrangements 
in the natural basis where all spins are parallel to the z-axis. There are a collection 
of spatial configurations that the electrons can get into for which their order does not 
change, and for which they are only ever found in edge bonding configurations. AU 
these states may be annotated by the spinless fermion description of equation (3). 
The original Hamiltonian acting on these states has precisely the same behaviour as 
the spinless fermion description. There is one complication that will be addressed in 
the next subsection: Exchange in the presence of a spin singlet. 
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2.2. The two-particle problem 

In this section we will look at ways to extend the singleparticle description of equa- 
tion (3) to include situations where two electrons meet and ezchange in a square. 
We will assume that the spin configuration of the electrons ordered along the chain 
is fized but that not all the spins are parallel. Our first task is to appreciate the 
many-particle states that the description of equation (3) can describe. As already 
explained, the states when all the electrons are separated are properly counted and 
correctly coupled by this description. The difficulties occur when two particles meet 
in a square. There are two situations to consider: When the two particles meet in 
either a relative spin triplet or a relative spin singlet. 

The configurations when two particles meet in a relative spin triplet are completely 
analogous to those found when d l  the spins are parallel, and equation (3) describes 
all the possibilities precisely. The difficulty is describing the configurations when the 
two particles meet in a relative singlet. 

The spinless fermion description breaks down’when two electrons sit in a spin 
singlet simultaneously on an edge bond. Although the numbers of states are the 
same, there being a unique state with the edge bond pair in a singlet in the original 
description corresponding to the state where both spinless fermions are present, the 
singleparticle description does no2 connect them with the correct matrix elements. 
As an example, when two electrons are in a relative singlet and are also in bonding 
combinations on neighbouring edge bonds, there are matrix elements allowing the 
electrons to doubly occupy either edge bond. For the spinless fermion problem this 
possibility is prohibited by Pauli exclusion. Indeed, it is precisely the use of the spin 
singlet to avoid Pauli exclusion which constitutes the attraction in our description. 
Although the edge bonding and edge anti-bonding states are independent at the single- 
particle level, at the two-particle level they become mixed. In the final section we will 
interpret this mixing, but now we will proceed to develop the description for situations 
where there are some singlet correlations in the fixed spin background. 

Provided that we restrict attention to electron configurations where each square 
has either zero, one or two electrons, then we can describe the singlet configurations 
precisely by the Hamiltonian: 

where ajj, = f l  has the opposite sign for the two contributions connecting the same 
edge bond and Pi is an operator which is zero when the two relevant spins are parallel 
and unity when the two relevant spins are in a relative spin singlet: Pj = - SI . S, 
in terms of the two relevant spin operators. The two-particle contributions to the 
edge bonding terms cancel out and are therefore irrelevant. The important term is 
the final term which promotes the correct behaviour for pairs which meet in relative 
spin singlets, compensating for the reduced hopping rates in the first terms, which are 
analogous to the original spinless fermion description. 
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A t  this point we should point out the role of the background spin configura- 
tion. The operators Pj behave like Heisenberg operators; they act between nearest- 
neighbour spins and promote spin correlations which are eigenstates of the nearest- 
neighbour Heisenberg model. The solutions have translational symmetry and the 
probability that nearest neighbours are spin singlets are the fixed scaled eigenvalues 
of the relevant Heisenberg eigenstates. We will not develop the spin excitations any 
further in this article, although the likely behaviour is straightforward. The more 
important characteristics for us are the charged excitations. 

The effective Hamiltonian is best represented at the two-particle level by 

Ho = -t f) fj - t $fj, + t g,'gj - 1 gjgj, (5a)  
j (jj') j (jj') 

The pair of electrons which are moved by the final term are on opposite sides of the 
ladder, as the opposite relative phase of the two operators suggests, and the double 
occupancy constraint requires. This Hamiltonian transforms into reciprocal space as 

H, = -1 f l fk( l  + 2 cos .E) + t gfgr(l - 2 cos k) 
k b 

x [ f f , g p 2 ( c o s q ' + ~ ~ ~ ) + i ( s i n ~ ' - s i n q ) ( f f , f f  + gQ,g,)l+ C C )  (6b)  

where N is the number of edge bonds and we have made a particular choice for the 
phases m j j t .  

We could develop a pairing theory from this description directly, but it is much 
more transparent if we restrict attention to states composed purely of f-fermions and 
include the hybridization into the doubly occupied states perturbatively. The effective 
Hamiltonian is approximately: 

H = -tCfjfj - t fjfjt - nt ~ ~ ( Y ~ ~ , f : , f ) ~ ~ f ~ , , a ~ ~ , ,  (7a) 
j (Jj'l ( j i ' )  W ' I  

where we have chosen the interaction strength to be correct at the Fermi energy. 
The factor K is depicted in figure 3 as a function of band filling. The fact that K 
is relatively small ensures that we can consider the two-particle interactions as only 
a weak additional interaction even when the electron concentration becomes quite 
sizeable. We will develop a BCS pairing theory for this model in the next section, but 
first we will indicate how this Hamiltonian is derived. 

The more precise formulation of the two-particle interaction involves transforming 
into reciprocal space where second-order perturbation theory yields 
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Figure 3. The function I(. which controls the strength of the two-particle inter- 
actions. plotted BS a function of band filling, n = kjr. At hdf filled, where the 
g-fermioils commence to become occupied and the description breaks down, there is 
a weak logarithmic divergence. 

x (sinq-ssinq’)+[B,k,+ B,,,] 

1 e(-t - 2t cosp - p) 
= i+ (1 +COS k + cask' - COSP - COSP’) 

PP’ 

dz [(1+ cosk + cosk’ - cosz)’ - l]-’’’ (8b)  

where p = -t(l + 2cosk,) is the chemical potential. The interaction strength E,,, 
involves virtual excitations including one f-fermion and one g-fermion with momenta 
p and p‘ respectively. The g-fermion momentum is unconstrained as the g-band is 
assumed unoccupied, but the f-fermion momentum is restricted to unoccupied states; 
enforced by the theta function. 

If we restrict attention to pairs with zero total momentum then the result reduces 
to: 

6381 
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from which the description of equation (7) naturally follows. 
The residual spin interaction is precisely Pi = f - SI . S,, a nearest-neighbour 

antiferromagnetic exchange interaction. This term induces the Beisenberg ground 
state for the spin degrees of freedom which in turn leads to a replacement of Pj by 
P ;  a c-number which is the probability of finding nearest neighbours in a relative spin 
singlet in the Beisenberg ground state. The interaction strength is K P ~ ,  and the effect 
of spin excitations is expected to he a weak average decrease in the attraction as the 
probability that the electrons meet as spin singlets is reduced. There is not expected 
to be any destruction of the charge motion coherence by scattering off low energy spin 
excitations as might naively be expected. 

One complication that spin excitations might contribute is the possibility of non- 
conservation of momentum in the effective two-particle interactions. This could lead 
to an increase in the two-particle interaction strength, as the virtual excitations could 
occur a t  lower energies. We do not believe that this possibility is actually relevant. 

The effective two-particle interaction in our final description is an attraction be- 
tween pairs of spinless fermions. The spatial symmetry of a pair of spinless fermions 
is necessarily antisymmetric and so the resulting ‘gap’ vanishes at the zone centre and 
grows linearly with wavevector as we shall show in the next section. The other main 
difference to standard BCS theory is the fact that the attraction is short range in real 
space, leading to an expectation of a shorter coherence length for a Cooper pair. 

It is straightforward to develop a BCS pairing theory for this model, bu t  before 
we do this we will discuss the approximations and indicate the likely effects of the 
phenomena omitted. 

2.3. Approziinofions 

There are sevwal weak points in the present article and we would like to highlight 
four: 

(i) the spin configuration is assumed to be the Heisenberg ground state; 
(ii) the three-particle interactions have been omitted; 
(iii) we have assumed only virtual excitation of gl fermions; and 
(iv) the system is one-dimensional and fluctuations are therefore dominant as they 

(i) For the interacting onedimensional Hubbard model, the exact solution of Lieb 
and Wu [6] can be used to show that the spin excitations and charge excitations 
separate. For the present model we believe that precisely the same separation occurs 
for the same reasons, although we have not demonstrated the result mathematically. 
It is conceivable that the translational symmetry could become broken with a type 
of ‘spin Peierls’ phase being stable, namely with alternating singlet and uncorrelated 
bonds in the ground state. It is our belief that this does not happen and that the 
simple picture of Heisenberg interactions reduced by the necessity for two particles to 
exchange in a single square is the correct picture. 

(ii) When three particles meet in a square, our description ensures that any two in 
a relative spin singlet can doubly occupy edge bonds, hut when a particle hops from 
one doubly occupied edge bond to another doubly occupied edge bond, the descrip- 
tion breaks down. The ground state to three electrons in a square yields ferromagnetic 
correlations and the equivalent effective repulsion for three particles meeting in a para- 
magnet is omitted from our description. In order for this effect to become important 

are in any  interacting system. 
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we would require a high probability of finding three electrons on a single square and 
this would only be possible if there was a significant density of g-fermions. 

(iii) Our restriction to states composed purely of f-fermions ensures that there are 
none of the previous problems associated with triply occupied squares, because Pauli 
exclusion ensures that the f-electrons are separated. The approximation itself however 
is a more drastic simplification in its own right. A naive estimate of the probability of 
finding spinless fermions on neighbouring sites and therefore subject to the additional 
attraction can be found from assuming that the fermions are spatially decorrelated. 
The probability would then be p 2 ,  where p is the density of spinless fermions. If 
this were an accurate estimate, then the approximation would soon he very poor. 
Fortunately, Pauli exclusion ensures that spinless fermions avoid each other as much 
as possible and this probability is severely reduced. For the present system we find a 
probability of 

that two neighbours are simultaneously occupied, and this is approximately ( r 2 / 3 ) p 4  
which remains fairly small even up to half filling when the g-fermions start to become 
directly relevant. Although this contribution is probably the dominant source of error 
in our calculations, we do not feel that it will be strong enough to affect the picture 
we present. The relaxation of the approximation will both severely complicate the 
analysis and enhance the attraction, by allowing added hybridization into other states 
when the particles are nearby. 

(iv) The anomalous behaviour of quantum fluctuations in one-dimensional systems 
is so severe, that any long range result that we derive must be viewed as misleading. 
Fortunately, although the behaviour of phase transitions and such is completely differ- 
ent, the physical phenomenon of an attraction between charge-carriers is a local effect 
and in two dimensions where the relevant experimental systems are best modelled, 
the attraction will have a more profound effect. Like many others, we believe that the 
loss of long range order in one dimension is a bit of a ‘red herring’. 

3. A BCS pairing theory 

Developing a BCS pairing theory for the interacting spinless fermion description of 
equation (7) is elementary. In terms of the following expectation values: 

we find a mean field description: 
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in terms of the effective potentials: 

A, = -t - 2t COS E - /1 - bPn[4Fa - 2Fo COS 28 - 2FJ (126) 

B, =4tPnsinkA. (124 

The potential A, is the renormalized spinless fermion dispersion. The first three 
terms are the non-interacting dispersion measured with respect to the chemical po- 
tential, and the final term describes the additional singkparticle hopping resulting 
from the interaction with a second spinless fermion when it is present. The potential 
B, is the pairing potential and sets the energy scale for the 'gap'. This potential is 
necessarily antisymmetric in reciprocal space and vanishes linearly with wavevector, 
although we will see later that, considered as a function of doping, the dependence of 
A on the chemical potential is the dominant variation. 

The single-particle description of equation (12) can be diagonalized by a Bogoli- 
ubov transformation to yield 

in terms of two new fermions z17 with r = kl and an energy of X, = v/[Ai + Bi] .  
The self-consistent 'gap' equation is 

which must be solved for the value of A. If we assume that the gap is small, and 
linearize the non-interacting bandstructure at the Fermi energy, then the solution for 
A is 

which yields the weak coupling solution for the gap of B, = 4tPnsinklA. Using the 
favourable values of L, = R / Z ,  P - 3/4 and K - 1/5, we find a very weak gap of 
B, - t6e-1°. 

The particular values are unimportant, one should only recognize the basic feature 
that we find a gap on the energy scale of the hopping matrix element which vanishes 
very quickly at low electron concentrations. 

4. Conclusions 

Our most important conclusion is that we have found a new physical phenomenon 
which yields an attraction between charge-carriers. 

In standard BCS theory any weak attraction imposed on a non-interacting free 
electron gas yields a pairing solution. The key to the strong-coupling paramagnets is 
to note that we can compare with a non-interacting spinless fermion gas, for which 
any additional attraction once again yields a pairing solution. 
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The spinless fermion solution corresponds directly to the behaviour of a saturated 
ferromagnet. The existance of any low spin correlations behaves as a short range 
attraction between the spinless fermions. The bulk of this article involves a technical 
formulation of the many-body aspects of this attraction. Here we will give a simple 
description of the physical content of the attraction. 

When we consider two electrons on an isolated square, hopping via the t-model, we 
find that the ground state is a total spin singlet. A careful analysis of the wavefunction 
shows that it is identical in form to the solution of two spinless hard-core bosons on 
the same geometry. The natural interpretation is that the spin singlet antisymmetry 
has converted the pair of fermions into a pair of hard-core bosons. Although one 
hard-core boson has precisely the same energy as one fermion, two hard-core bosons 
achieve a lower ground state energy than two fermions on corresponding bipartite 
geometries. Any description of a hard-core bosonic problem in terms of a spinless 
fermionic problem necessarily involves an attraction at the two-particle level. 

This is the basic physical content of our analysis. The extent to which a pair 
of electrons meet in a spin singlet is the extent to which the system behaves like 
a hard-core bosonic system. The system is best considered somewhere between the 
two pure systems. We have developed our modelling in terms of the spinless fermion 
system and one might presume that we believe that this is the best description. This 
i s  noi the case. The reason that we have modelled with spinless fermions is simply 
because spinless fermions yield a non-interacting solution which can be solved exactly. 
The residual interactions can then be analysed ‘perturbatively’. We believe that the 
spinless hard-core boson description is closer to the truth. 

It is not possible for one spin to be simultaneously in a relative spin singlet with 
two other spins. This fact prohibits the possibility of a fermionic system behaving as a 
pure hard-core boson problem. For the present system the extent to which all relevant 
nearest neighbours are spin singlet is controlled by the probability P in our model. 
For the present case P is approximately 0.7 and the nearest-neighbour spins meet in 
a relative spin singlet about 70% of the time. The system is consequently much more 
hard-core bosonic than fermionic. We would suggest using the model: 

X = -t c(1 - P j b j k ) b f b i , ( l  - pj ,bf ,b; , )  
( i i ‘ )  

where bf are spinless hard-core boson operators, pj = 1 - Pj is the operator that 
tests whether the relevant spin pair is triplet and j is the edge bond pair composed 
from the two atoms i and 1. This Hamiltonian describes the motion of electrons 
in the Heisenberg ground state as a minor modification to the spinless hard-core 
boson problem. The many-particle contributions involve the probability which is 
approximately 0.3 and is a better small parameter than P. The real complication is 
that the singleparticle spinless hard-core boson system is truely interacting and as 
yet unsolved. It is our belief that for the two-dimensional systems an analysis based 
upon a hard-core spinless boson system may prove more fruitful than a corresponding 
analysis based upon spinless fermions [7]. On a practical level, a description based 
upon spinless fermions necessitates an antisymmetric gap function with nodes and 
there is no experimental evidence for nodes. A hard-core spinless boson state on the 
other hand has spherical symmetry. 

Although we have restricted attention to the t-model in this article, an extension 
to the t-J model is trivial and simply further stabilizes the pairing. The Heisenberg 
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interaction becomes: 

in our description to the order of our approximations, combined with a minor modifi- 
cation to the pairing potential due to the fact that the virtually excited state involves 
some Heisenberg energy. The matrix element is reduced by a factor of two since two 
neighbouring edge bonding states only have a 50% probability of being nearest neigh- 
bours. The pairing potential is increased from tPtc to tP(tc + J / 8 t )  where J = 4 t 2 / U .  

We have developed a pairing theory for our attraction, and at first glance one 
might be disappointed a t  the small gap generated by our calculation. Our level of 
approximation has been unkind to the two particle interactions. The only behaviour 
allowed by our approximations is a virtual hop from two f-states into a doubly occupied 
edge bond state, followed by a hop transferring the electrons back into two f-states. 
It seems clear that  a more thorough treatment of the behaviour will strengthen the 
attraction by allowing the electrons to approach along opposite sides of the ladder to 
some extent, locally using the g-states. The single-particle spinless hard-core boson 
model would promote these type of correlations for example. 

A more important point is that the experimental systems have features which will 
strongly enhance the phenomenon we have described. The existence of the interme- 
diate oxygen atoms is the crucial physical consideration. Not only are the hopping 
matrix elements locally increased by short range Coulomb interactions, but also, the 
local connectivity topologically frustrates charge motion at the single-particle level. 
When single-particle motion is frustrated, Pauli exclusion can be partially avoided 
because one particle can approach a second along a path which is rarely used by 
the second particle. We believe that this topological consideration is paramount in 
fostering a large two-particle interaction [7]. 

The energy scale of the pairing interaction is the hopping matrixelement, t .  Room 
temperature superconductivity is a theoretical possibility. 
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